On pattern avoiding alternating permutations

نویسندگان

  • Joanna N. Chen
  • William Y. C. Chen
  • Robin D. P. Zhou
چکیده

An alternating permutation of length n is a permutation π = π1π2 · · ·πn such that π1 < π2 > π3 < π4 > · · · . Let An denote the set of alternating permutations of {1, 2, . . . , n}, and let An(σ) be the set of alternating permutations in An that avoid a pattern σ. Recently, Lewis used generating trees to enumerate A2n(1234), A2n(2143) and A2n+1(2143), and he posed some conjectures on the Wilf-equivalence of alternating permutations avoiding certain patterns of length four. Some of these conjectures have been proved by Bóna, Xu and Yan. In this paper, we prove two conjectured relations |A2n+1(1243)| = |A2n+1(2143)| and |A2n(4312)| = |A2n(1234)|.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Trees and Pattern Avoidance in Alternating Permutations

We extend earlier work of the same author to enumerate alternating permutations avoiding the permutation pattern 2143. We use a generating tree approach to construct a recursive bijection between the set A2n(2143) of alternating permutations of length 2n avoiding 2143 and the set of standard Young tableaux of shape 〈n, n, n〉, and between the set A2n+1(2143) of alternating permutations of length...

متن کامل

Alternating, Pattern-Avoiding Permutations

We study the problem of counting alternating permutations avoiding collections of permutation patterns including 132. We construct a bijection between the set Sn(132) of 132-avoiding permutations and the set A2n+1(132) of alternating, 132avoiding permutations. For every set p1, . . . , pk of patterns and certain related patterns q1, . . . , qk, our bijection restricts to a bijection between Sn(...

متن کامل

Symmetric Permutations Avoiding Two Patterns ∗

Symmetric pattern-avoiding permutations are restricted permutations which are invariant under actions of certain subgroups of D4, the symmetry group of a square. We examine pattern-avoiding permutations with 180◦ rotational-symmetry. In particular, we use combinatorial techniques to enumerate symmetric permutations which avoid one pattern of length three and one pattern of length four. Our resu...

متن کامل

Beyond Alternating Permutations: Pattern Avoidance in Young Diagrams and Tableaux

We investigate pattern avoidance in alternating permutations and generalizations thereof. First, we study pattern avoidance in an alternating analogue of Young diagrams. In particular, we extend Babson-West’s notion of shape-Wilf equivalence to apply to alternating permutations and so generalize results of Backelin-West-Xin and Ouchterlony to alternating permutations. Second, we study pattern a...

متن کامل

On a Family of Conjectures of Joel Lewis on Alternating Permutations

We prove generalized versions of some conjectures of Joel Lewis on the number of alternating permutations avoiding certain patterns. Our main tool is the perhaps surprising observation that a classic bijection on pattern avoiding permutations often preserves the alternat-

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2014